Questões selecionadas do ENADE – Econometria

Prof. Francis Petterini (UFSC)

Novembro de 2025

Sumário

- **ENADE 2006**
 - Questão 14
 - Questão 36
 - Questão 37
- 2 ENADE 2009
 - Questão 24
 - Questão 25

- 3 ENADE 2012
 - Questão 19
 - Questão 20
 - Questão 28
 - Questão 29
- 4 ENADE 2015
 - Questão 20
 - Questão 33

- **S** ENADE 2018
 - Questão 31
 - Questão 33
- 6 ENADE 2022
- Questão 11
 - Questão 15
- Respostas

Questão 14 – ENADE 2006

Um economista deseja verificar se as variações do consumo (C) são determinadas pelas variações da renda (R), segundo a fórmula $\Delta C_t = \alpha + \beta \cdot \Delta R_t + \epsilon_t$. Para tal, coloca as variacões do consumo no vetor v. e as variações da renda na segunda coluna da matriz X, abaixo, e implementa mínimos quadrados ordinários para estimar os coeficientes $\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = (X'X)^{-1}X'y$, onde o apóstrofo denota transposição.

Se
$$X = \begin{pmatrix} 1 & 3 \\ 1 & 5 \\ 1 & 6 \end{pmatrix}$$
, $y = \begin{pmatrix} 2 \\ 4 \\ 5 \end{pmatrix}$, então a seguinte proposição está correta:

(A) o produto matricial $X'X = \begin{pmatrix} 3 & 1 & 0 \\ 1 & 5 & 1 \\ 0 & 1 & 6 \end{pmatrix}$.

- (B) o produto matricial $X'y = \begin{pmatrix} 1 & 0 \\ 0 & 14 \end{pmatrix}$.
- (C) o determinante de X'X é igual a 14.
- (D) X'X não é inversível.
- (E) dadas as dimensões de X e y, X y não é um produto matricial possível.

Questão 36 – ENADE 2006

Considere a tabela abaixo, advinda de uma análise de regressão associada à função de consumo keynesiana:

$$\Delta C_t = \alpha + \beta \Delta R_t + \varepsilon_t,$$

onde C é o consumo e R é a renda.

	Coeficiente	Erro-padrão	Estatística-t
α	-0,0005	0,0046	-0,11
β	0,4568	0,0675	6,76
R^2	$B^2 = 0.2793$ B^2 Ajustado = 0.2732. SOR = 0.3016. Durbin-Watson = 1.88. Número de observações = 120		

- Uma possível conclusão desta análise de regressão é que
- (A) deve ser rejeitada a hipótese nula de que o intercepto da reta de regressão seja igual a zero.
- (B) deve ser rejeitada a hipótese nula de que o coeficiente angular da reta de regressão seja igual a 0,45.
- (C) a estimativa de β não é significativamente diferente de zero *ao nível de confiança de* 90%.
- (D) a estatística de Durbin–Watson deveria ser mais distante de 2 para que a não-correlação dos resíduos ficasse caracterizada.
- E) o modelo *proposto* explicou 27,93% das flutuações *da variação do consumo*.

Questão 37 – ENADE 2006

QUESTÃO 37

Considere o modelo autoregressivo AR(1) dado por:

$$y_t = \rho \cdot y_{t-1} + v_t$$

onde $E(v_t)=0$, $var(v_t)=\sigma_v^2$ e $E(v_tv_s)=0$, $\forall s\neq t$ e E(.) a esperança incondicional.

É correto afirmar que

- (A) se $-1 < \rho < 1$, o processo y é não estacionário.
- (B) se $|\rho| > 1$, o processo é estacionário.
- (C) a variância incondicional de y é dada por $\ \sigma_y^2=\frac{\sigma_v^2}{1-\rho^2}$, se $|\rho|<1$.
- (D) o processo não é auto-regressivo, mas de média móvel.
- (E) um ρ negativo significa que y_t guarda pouca relação com o seu passado.

ENADE 2009 — Q24

Considere o modelo de **regressão linear múltipla**, com variável dependente y e variáveis explicativas x_1, \ldots, x_k :

$$y_t = \beta_1 + \beta_2 X_{2t} + \beta_3 X_{3t} + \cdots + \beta_k X_{kt} + \varepsilon_t,$$

no qual ε_t é o erro e $t = 1, 2, \dots$ indexa as observações.

É CORRETO afirmar que o modelo clássico (Gauss-Markov) supõe que:

- a relação linear entre pelo menos duas variáveis explicativas seja exata.
- ① a variância dos erros varie na amostra: $E(\varepsilon_t^2) \neq E(\varepsilon_z^2)$ para $t \neq z$.
- o valor esperado do erro seja diferente de zero: $E(\varepsilon_t) \neq 0$.
- os erros **não sejam correlacionados**: $E(\varepsilon_t \varepsilon_z) = 0$ para $t \neq z$.
- 9 os valores das variáveis explicativas X_2, X_3, \dots, X_k variem de amostra para amostra.

ENADE 2009 — Q25

Considere o mesmo modelo de **regressão linear múltipla**:

$$y_t = \beta_1 + \beta_2 X_{2t} + \beta_3 X_{3t} + \cdots + \beta_k X_{kt} + \varepsilon_t,$$

em que ε_t é o erro e $t = 1, 2, \ldots$

Nesse modelo, avalie:

- Alto grau de multicolinearidade torna imprecisas as estimativas (MQO) dos parâmetros populacionais.
- Inclusão de variável explicativa irrelevante torna o estimador MQO tendencioso.
- Sob as hipóteses clássicas, estimadores MQO são consistentes e têm mínima variância entre os lineares não tendenciosos.
- Ao incluir variável irrelevante em regressão múltipla, o $R_{ajustado}^2$ não se eleva de forma significativa, mesmo que aumente o R^2 .

Estão CORRETAS somente as afirmativas:

- I e III.
- I, II e IV.
- I, II e III.
- I, III e IV.
- II e III.

Questão 19 — ENADE 2012

Suponha que o Ministério da Educação contrate um economista como consultor para mensurar o efeito do gasto público com a educação sobre a renda da população. O consultor propõe o modelo:

$$\ln Y_t = \beta_1 + \beta_2 \ln GE_t + \sum_{j=1}^{k} \gamma_j \ln X_t^j + u_t$$

em que ln Y_t e ln GE_t são, respectivamente, o logaritmo da renda da população e do gasto público com educação no período t; X_t^j são variáveis de controle; $\beta_1, \beta_2, \gamma_j$ são coeficientes e u_t é o erro. Admitindo-se que a transformação logarítmica é estacionária para todas as variáveis, verifica-se que:

- o a renda aumenta em R\$1,00 para cada R\$1,00 gasto com educação, se $\beta_2 = 1$.
- \bigcirc β_1 é o nível médio de gasto com educação, controlado pelas demais variáveis do modelo.
- a variação percentual da renda será **maior** que a variação percentual do gasto público com educação, se $\beta_2 > 1$.
- a renda da população aumenta menos que 1% quando o gasto público com educação aumenta em 1%, se $\beta_1 < 1$.

Questão 20 — ENAD 2012

Dois estudantes de Economia, João e Pedro, discutem modelos de crescimento econômico. João propõe:

$$gY_j = \beta_1 + \beta_2 iK_j + \beta_3 iH_j + \beta_4 n_j + u_j$$

Pedro inclui uma proxy de qualidade institucional (*INST*):

$$gY_j = \alpha_1 + \alpha_2 iK_j + \alpha_3 iH_j + \alpha_4 n_j + \alpha_5 INST_j + \varepsilon_j$$

Assuma alguma correlação entre *INST* e as demais variáveis. Estimam-se ambos por MQO e testa-se H_0 : $\alpha_5 = 0$. Na situação acima descrita:

- \bigcirc se **for rejeitada** H_0 , então, na estimativa do modelo de João, os coeficientes estimados são viesados.
- \bullet se **não for rejeitada** H_0 , então, no modelo de João, os coeficientes estimados são viesados.
- \bigcirc se **não for rejeitada** H_0 , então, no modelo de Pedro, os coeficientes estimados são eficientes.
- \bigcirc se **for rejeitada** H_0 , então, no modelo de Pedro, os coeficientes estimados são não eficientes.
- \bigcirc se **não for rejeitada** H_0 , então, no modelo de João, os coeficientes estimados são não eficientes.

Questão 28 — ENADE 2012

Para captar o impacto do investimento público (IG) sobre o investimento privado (IP), estimou-se:

$$ln(IP)_t = \beta_1 + \beta_2 r_t + \beta_3 ln(IG)_t + u_t$$

Com n = 33 observações (MQO), obteve-se:

$$\widehat{\ln(IP)}_t = 10 - 0.35 \, r_t + 0.15 \, \ln(IG)_t + u_t$$
 Erros-padrão: (2,5) (0,1) (0,25)
$$S^2 = 16.5, \quad SQT = 1100, \quad F = 14.31818, \quad p\text{-valor}(F) = 0.00004, \quad t_{30:0.025} = 2.042272.$$

A interpretação da regressão permite concluir que:

- 45% das variações de *IP* são explicadas pelo modelo.
- a soma dos quadrados dos resíduos do modelo é igual a 16,5.
- o impacto de *IG* sobre *IP* é estatisticamente significante a 95%.
- w um aumento de 1 p.p. em r_t produz aumento de 0,35% em IP, significante a 5%.
- **a** em análise conjunta, r_t e $\ln(IG)_t$ não são significativos a 1%.

Questão 29 — ENADE 2012

Discute-se que educação e experiência elevam a renda do trabalho; o efeito da educação é convexo e o da experiência, côncavo. Para testar, propõe-se o modelo minceriano estendido:

$$\ln Y_i = \beta_1 + \beta_2 EDUC_i + \beta_3 EDUC_i^2 + \beta_4 EXP_i + \beta_5 EXP_i^2 + \sum_j \gamma_j X_{ji} + u_i,$$

em que X_{ji} são dummies/controles (segmentação/discriminação). Entre os resultados da estimação, seria adequado conjecturar que:

- $\widehat{\beta}_3 > 0 \ e \ \widehat{\beta}_5 < 0.$
- \odot os parâmetros γ_j são estatisticamente insignificantes.
- lacktriangle um ano a mais de experiência aumenta a renda em eta_5 para pessoas sem experiência.
- 9 um ano a mais de educação aumenta a renda em $\widehat{\beta}_2$ + 10 $\widehat{\beta}_3$ para quem tem 10 anos de estudo.

ENADE 2015 — Q20

A utilização de dados em painel para a análise de políticas públicas tornou-se bastante comum recentemente, dada a disponibilidade de informações para anos consecutivos de variáveis de interesse. Ainda que se faça uma análise para apenas dois períodos, no que se refere à variável dependente, a existência de informações anuais para vários períodos consecutivos das variáveis explicativas permite a utilização de modelos de defasagem distribuída.

Para análise da ocorrência de crimes e da influência das prisões, foi realizado um estudo na Noruega com dados para 53 distritos policiais, tendo sido medida a taxa de crimes (crime) para os anos 1972 e 1978. A variável explicativa foi definida como a porcentagem dos crimes que resultaram em prisão (pcp). O modelo com controle para efeitos fixos foi especificado como

$$log(crime) = \beta_0 + \delta_0 D78_t + \beta_1 pcp_{i,t-1} + \beta_2 pcp_{i,t-2} + a_i + u_{i,t}$$

em que $D78_t$ é uma variável *dummy* com valor igual a 1 para o ano 1978 e zero para 1972; a_i corresponde ao controle para os efeitos fixos e $u_{i,t}$ corresponde aos resíduos da regressão. Utilizando-se a primeira diferença da equação acima, a estimação resultou em

$$\Delta \log \left(\widehat{crime}\right) = 0.086 - 0.004 \Delta pcp_{-1} - 0.0132 \Delta pcp_{-2}$$

$$R^2 = 0.193 \left(1.34\right) \left(0.85\right) \left(2.54\right)$$

Os módulos dos valores entre parênteses são, respectivamente, as estatísticas *t* calculadas para cada um dos coeficientes estimados e o valor *t*, tabelado ao nível de significância de 5%, é igual a 2,00.

ENADE 2015 — Q20 (continuação)

Considerando os resultados do estudo descrito acima e a influência das prisões sobre a criminalidade, conclui-se que

- o modelo explica 0,193% da variabilidade da variável dependente, conforme o coeficiente de determinação.
- 3 os crimes seriam declinantes, conforme a constante estimada, na ausência de prisões no período considerado.
- um aumento de 10% nas prisões resultaria, em média, em uma queda de 1,32% na taxa de crimes com dois períodos de defasagem.
- as prisões efetuadas no ano de 1972 têm efeito negativo e são estatisticamente significativas, ao nível de significância de 0,05, para a redução da criminalidade.
- as prisões efetuadas com a defasagem de dois períodos têm efeito negativo e exercem efeito significativo, ao nível de significância de 0,05, para a redução da criminalidade.

ENADE 2015 — Q33

Sabe-se que o aumento de anos de experiência em certas atividades profissionais acarretam acréscimos salariais. Porém, acredita-se que esses acréscimos sejam descrescentes ao longo dos anos. Para estudar esse problema, foi obtida, a partir de uma amostra aleatória de 526 indivíduos, os dados de salário por hora (w), medidos em Reais (R\$), e a experiência (x), medida em anos de exercício na profissão.

O modelo econométrico foi especificado como:

$$w = \beta_0 + \beta_1 x + \beta_2 x^2 + u; u \sim N(0, \sigma^2)$$

Os resultados encontrados para a estimação foram:

$$\widehat{w} = 3.73 + 0.298x - 0.0061x^2$$

Nessa expressão, a probabilidade exata do teste *t* para cada parâmetro estimado encontra-se, respectivamente, entre parênteses (p-valor). Considere as seguintes hipóteses:

 H_0 = a experiência não tem efeito sobre o salário ao longo dos anos;

 H_1 = a experiência tem efeito sobre o salário ao longo dos anos.

ENADE 2015 — Q33 (continuação)

Considerando o comportamento do salário em relação à experiência, tendo em conta os resultados encontrados, avalie as afirmações a seguir.

- I. Não é possível rejeitar $H_{\rm 0}$ ao nível de significância de 5%.
- II. Em face dos resultados, ao nível de significância de 1%, rejeita-se a H_0 -
- III. Ao serem representados graficamente os resultados acima, em que o salário por hora é função da experiência, observa-se que, inicialmente, a experiência pode exercer uma influência crescente sobre o salário, porém, após alguns anos, passa a ser decrescente.

É correto o que se afirma em

- I, apenas.
- III, apenas.
- (I e II, apenas.
- Il e III, apenas.
- (3) I, II e III.

Questão 31 — ENADE 2018

Um pesquisador estimou, com 567 observações:

$$\ln(S) = 1,2 - 0,04 G + 0,02 E + 0,01 X - 0,001 EG + u$$

$$(0,3) (0,01) (0,004) (0,002) (0,0001)$$

Onde:

- In é logaritmo natural; S = salário (R\$); E = anos de escolaridade;
- X =anos de experiência; G = 1 se mulher (0 se homem); $u \text{ com } \mathbb{E}[u] = 0$ e não correlacionado.
- os números entre parenteses são os erros-padrão das estimativas.

Com base no modelo, a respeito da diferença salarial H×M, assinale a opção correta:

- A) A diferença aumenta com a escolaridade de ambos.
- B) A diferença diminui com a experiência de ambos.
- **③** C) O modelo não rejeita igualdade salarial (coef. *G* não é significante).
- **1** D) Mulheres ganham $\approx 4\%$ a menos que homens, independentemente de E e X.
- S E) Mulher com 10 anos de escolaridade ganha ≈ 3% a menos que homem com mesma escolaridade e experiência.

Questão 33 – ENADE 2018

As ações de duas empresas brasileiras (X e Y) foram relacionadas ao índice Nasdaq via regressão linear:

	Empresa X	Empresa Y
Constante	24,39** (4,049)	41,64** (15,351)
Nasdaq	0,003* (0,001)	0,055** (0,006)
Número de observações	64	64
R^2	0,0432	0,5080
Durbin-Watson	0,2047	0,2518
Teste de White	8,0909	4,35153
<i>p</i> -valor (White)	0,0175	0,1135

Com base nos resultados e 5% de significância, assinale a opção correta:

- A) Rejeitam-se heterocedasticidade e não autocorrelação para ambas.
- B) Rejeita-se homocedasticidade para X e não se rejeita não autocorrelação para Y.
- ⑤ C) Não se rejeita homocedasticidade para X e rejeita-se não autocorrelação para Y.
- O) Rejeita-se não autocorrelação para ambas; não se rejeita homocedasticidade para Y.
- Se para ambas.
 E) Não se rejeita homocedasticidade nem não autocorrelação para ambas.

Questão 11 – ENADE 2022

Resumo dos resultados (MQO):

R múltiplo	0,90
R-quadrado	0,81
R-quadrado ajustado	0,79
Erro padrão	11,84

Coeficientes:

Lucro é a variável dependente	Coef.	Erro-padrão	Estatística t	p-valor
Interseção	151,44	9,23	16,41	1,47E-08
Multas devido aos poluentes (β)	-0,37	0,06	-6,47	7,15E-05

Afirmações:

- I. Rejeitando H_0 : $\beta = 0$, há relação linear *negativa* entre multas e lucro.
- II. A $n\tilde{a}o$ rejeição de H_0 : $\beta=0$ sugere que multas podem reduzir poluição por diminuírem o lucro.
- III. A 5% de significância, rejeita-se H_0 : $\beta=0$; pode-se estimar por $\hat{Y}=151,44-0,37X$.

É correto o que se afirma em:

- II, apenas.
- III, apenas.
- I e II, apenas.
- I e III, apenas.
- I, II e III.

Questão 15 – ENADE 2022

Regressão salarial (PNAD 2016) — diferenças por sexo – Para analisar diferenças salariais, estima-se salário/hora em função de *experiência* (anos) e *educação* (anos). Abaixo, resultados estimados separadamente para homens e mulheres

(erro-padrão entre parênteses; * significância a 5%):

	Homens	Mulheres
Constante	5,012* (0,4346)	4,821* (0,4783)
Experiência	0,1383* (0,009462)	0,1121* (0,009801)
Educação	0,6675* (0,02492)	0,5703* (0,02605)
N	2934	2066
<i>R</i> ² ajustado	0,2117	0,2048

Tomando como válidas as hipóteses clássicas de regressão e considerando os resultados, assinale a opção correta:

- As mulheres da amostra apresentam menor nível de escolaridade média.
- O retorno marginal da educação para as mulheres é maior do que para os homens.
- Cada ano de experiência adicional faz a remuneração das mulheres aumentar em R\$ 0,1121.
- Um aumento de 1% na educação dos homens gera um aumento de 0,6675% em sua remuneração.
- Aumentos na educação geram maior impacto sobre a remuneração dos homens com mais experiência.

Gabarito

Questão	Resposta
Questao	теврови
14	C
36	E
37	C
24	D
25	D
19	D
20	A
28	Anulada
29	В
20	E
33	D
31	A
33	Anulada
11	D
15	C
	36 37 24 25 19 20 28 29 20 33 31 33 11